Frischluft zuführen und dabei Temperatur und Luftfeuchtigkeit im Raum erhalten. Für Klimaanlagen ist das eine Herausforderung. Bestimmte Strukturen in Termitenhügeln könnten ein Vorbild sein.
Eine Person steht vor einem Termitenhügel.
Die Termiten lagern in den Hügeln bis heute das beim Bau ihrer unterirdischen Tunnelsysteme anfallende Erdreich ab. - dpa
Ad

Das Wichtigste in Kürze

  • Die besondere Art der Belüftung von Termitenhügeln könnte in Gebäuden für eine energiesparende Klimatisierung sorgen.

Das schliessen David Andréen von der Lund University in Lund (S) und Rupert Soar von der Nottingham Trent University in Nottingham (GB) aus Versuchen mit dem Ausgangskomplex eines Termitenhügels.

Die Bauweise der Tunnel sorgt für Turbulenzen der Luft, die von leichtem Wind in die Öffnungen geblasen wird. Die Studie ist in der Fachzeitschrift «Frontiers in Materials» erschienen.

«Wenn Sie ein Gebäude belüften, möchten Sie das empfindliche Gleichgewicht von Temperatur und Luftfeuchtigkeit im Inneren aufrechterhalten, ohne die Bewegung verbrauchter Luft nach aussen und frischer Luft nach innen zu behindern – die meisten Klimaanlagen haben damit zu kämpfen», erklärte Soar. Bei der Termitenart Macrotermes michaelseni in Namibia fanden die Forscher an der steilen Spitze des Hügels einen Ausgangskomplex, der während der Regenzeit (November bis April) hauptsächlich die Nordseite des Hügels durchdringt.

Es ist bereits vermutet worden, dass der Ausgangskomplex unter anderem dazu dient, überschüssige Feuchtigkeit aus dem Hügel zu transportieren. Wie dies genau funktioniert, war jedoch unklar. Einen Teil eines Ausgangskomplexes, der 2005 einem Termitenhügel in Namibia entnommen worden war, reproduzierten die Wissenschaftler mittels eines 3D-Druckers. Ihren Versuchen entnahmen Andréen und Soar, dass die netzartigen Strukturen der Tunnel für Turbulenzen sorgen, die die Luft (oder das Wasser) recht schnell ins Innere eindringen lassen.

Die Turbulenzen bewirken nicht nur ein tiefes Eindringen der Luft, wenn sie lediglich einige Millimeter in die Öffnungen geblasen wird. Die verwirbelte Luft kommt auch immer wieder mit der Tunnelwand in Kontakt, an der Pollen und andere Schwebstoffe der Luft teilweise abgeschieden werden. Es entsteht also auch eine Filterfunktion. Die turbulente Luft sorgt zudem dafür, dass sich an den Tunnelwänden kein Feuchtigkeitsfilm halten kann, der zur Schimmelbildung führen könnte.

«Wir stellen uns vor, dass Gebäudewände, die mit neuen Technologien wie Pulverbettdruckern hergestellt werden, in Zukunft Netzwerke enthalten werden, die dem Ausgangskomplex ähneln», sagte Andréen. Die Netzwerke könnten es ermöglichen, Luft durch eingebettete Sensoren und Aktoren zu bewegen, die nur winzige Mengen Energie benötigen. Auf diese Weise könnte künftig die Gebäudehülle selbst oder sogar das komplette Innere eines Gebäudes energiesparend klimatisiert werden.

Ad
Ad

Mehr zum Thema:

EnergieStudie